Search results

Search for "superconducting electronics" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

Ultrafast signatures of magnetic inhomogeneity in Pd1−xFex (x ≤ 0.08) epitaxial thin films

  • Andrey V. Petrov,
  • Sergey I. Nikitin,
  • Lenar R. Tagirov,
  • Amir I. Gumarov,
  • Igor V. Yanilkin and
  • Roman V. Yusupov

Beilstein J. Nanotechnol. 2022, 13, 836–844, doi:10.3762/bjnano.13.74

Graphical Abstract
  • ]. Superconducting spintronics is a branch of superconducting electronics, the key components of which are thin-film magnetic Josephson junctions (MJJs), which include layers of superconductors (S), ferromagnets (F) and insulators (I) [1][2][3][14][15]. The use of MJJs considerably reduces the energy consumption
PDF
Album
Full Research Paper
Published 25 Aug 2022

Tunable superconducting neurons for networks based on radial basis functions

  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Igor I. Soloviev,
  • Mikhail Yu. Kupriyanov,
  • Maxim V. Tereshonok and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2022, 13, 444–454, doi:10.3762/bjnano.13.37

Graphical Abstract
  • , ferromagnetic, and normal layers. Keywords: networks on radial basis functions; Josephson circuits; radial basis functions (RBFs); spintronics; superconducting electronics; superconducting neural network; Introduction For modern telecommunications, probabilistic identification of various sources in a
PDF
Album
Full Research Paper
Published 18 May 2022

Functional nanostructures for electronics, spintronics and sensors

  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1704–1706, doi:10.3762/bjnano.11.152

Graphical Abstract
  • , high-performance superconducting electronics elements for fast computing. This issue also contains progress towards various technological processes for fabrication and characterization of the base elements of a superconducting computer. For example, Arutyunov et al. [11] presented an advanced
PDF
Editorial
Published 10 Nov 2020

High dynamic resistance elements based on a Josephson junction array

  • Konstantin Yu. Arutyunov and
  • Janne S. Lehtinen

Beilstein J. Nanotechnol. 2020, 11, 417–420, doi:10.3762/bjnano.11.32

Graphical Abstract
  • particular “cost-no-object” applications. Currently, the field of superconducting electronics is developing much faster mainly due to the understanding that (even taking into consideration the necessity of refrigeration) the energy consumption of next generation supercomputers can be as low as ≈10 MW, which
PDF
Album
Full Research Paper
Published 03 Mar 2020

Inverse proximity effect in semiconductor Majorana nanowires

  • Alexander A. Kopasov,
  • Ivan M. Khaymovich and
  • Alexander S. Mel'nikov

Beilstein J. Nanotechnol. 2018, 9, 1184–1193, doi:10.3762/bjnano.9.109

Graphical Abstract
  • topological regime, , which is of crucial importance for topological superconducting electronics and topologically protected fault-tolerant quantum computing. In our estimates we take the standard limit of μw = 0 for the sake of simplicity. First, the increase of Γw reduces the parameter range of the
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2018

Beyond Moore’s technologies: operation principles of a superconductor alternative

  • Igor I. Soloviev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Mikhail Yu. Kupriyanov,
  • Alexander L. Gudkov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2017, 8, 2689–2710, doi:10.3762/bjnano.8.269

Graphical Abstract
PDF
Album
Review
Published 14 Dec 2017

Anodization-based process for the fabrication of all niobium nitride Josephson junction structures

  • Massimiliano Lucci,
  • Ivano Ottaviani,
  • Matteo Cirillo,
  • Fabio De Matteis,
  • Roberto Francini,
  • Vittorio Merlo and
  • Ivan Davoli

Beilstein J. Nanotechnol. 2017, 8, 539–546, doi:10.3762/bjnano.8.58

Graphical Abstract
  • (Nb) is the most commonly used material in superconducting electronics [1][2][3], but several groups have been investigating the properties of metals and alloys that could represent an alternative to it. Niobium nitride (NbN), in particular, is a promising material in this respect given its relatively
PDF
Album
Full Research Paper
Published 02 Mar 2017
Other Beilstein-Institut Open Science Activities